Can the Green Belt be Developed Sustainably to Ease London’s Housing Crisis?

The housing crisis in London has become increasingly severe in the last decade with much higher prices, rents, and largely static incomes, while housing development volumes have remained consistently below targets. Green Belt reform is often cited as a solution to boost development, though this has been off the agenda during the last 13 years of Conservative government. Recent announcements by the Labour leadership, supporting Green Belt reform and setting ambitious targets for housing development, could change this state of affairs with the general election coming in 2024.

This article analyses housing development in the London region from 2011-2022 (full CASA Working Paper here), using the Energy Performance Certificate Data. There is strong evidence that the Green Belt is a major barrier to development and is in need of reform. On the other hand, there are very substantial challenges around the quality and sustainability of new build housing in the South East. The analysis shows that, outside of Greater London, new build housing typically has poor travel sustainability and energy efficiency outcomes. Any release of Green Belt land needs to be dependent on travel sustainability criteria and improved energy efficiency for new housing. Sustainable housing outcomes are much more likely to be achieved through prioritising development in existing towns and cities and in Outer London.

London’s Housing Affordability Crisis
House prices in London doubled between 2009 and 2016, pricing out households on moderate and low incomes from home ownership, and translating into rent increases, longer social housing waiting lists, increased overcrowding and homelessness (see Edwards, 2016; LHDG, 2021). Price rises are linked to on the one hand to the financialization of housing (exacerbated by record low interest rates and Help to Buy loans in the 2010s) and on the other a long period of low housing supply, stretching back to the 1980s and the erosion of public housing.

The impact is record levels of unaffordability, with Inner London average house prices reaching £580k and Outer London £420k in 2016 (see chart below). The median house price to income ratio for Inner London soared from 9.9 in 2008 to 15.1 in 2016; for Outer London the ratio increased from 8.2 in 2008 to 11.8. In addition to high prices, first-time buyers have also been hit with record mortgage deposit requirements, with average deposits reaching £148,000 for Greater London, compared to around £10,000 in the late 1990s (Greater London Authority, 2022). Owner occupation is now effectively impossible in Inner, and much of Outer, London for low and moderate income buyers.

There have also been substantial increases in prices across the London region. The map below shows prices per square metre in the South East showing four radial corridors of high prices extending beyond Greater London into the Green Belt. East London is increasingly mirroring West London with two radial corridors of higher prices extending north-east and south-east from Inner East London. These are the primary areas of gentrification in London in the last decade (discussed in previous blog post), squeezing out what was the largest area of affordable market housing. There is also a distinct spatial alignment between London’s Green Belt boundary and higher prices, which is evidence of regional housing market integration, and that Green Belt restrictions are pushing up prices.

New Build Housing Delivery in the London Region
Greater London has struggled to meet its housing targets in the last decade. The current London Plan target is for 52k annual completions, which, as can be seen in the graph below, London is significantly short of. The 52k annual target has been criticised as being too low, with other estimates of housing need calculating that 66k or even 90k houses per year are needed (LHDG, 2021). Given the extremely high prices, affordable housing tenures are needed more than ever, yet affordable housing delivery has fallen in the 2010s (although note there has been progress in affordable housing starts in the last two years). Finally, the recent impacts of the pandemic and high interest rates have hit market housing activity, meaning that London will very likely continue to miss its overall housing targets for the next 2-3 years.

We can look in more detail at the geography of housing delivery at local authority level in the scatterplot below. There is high development in most of Inner London, and some Outer London boroughs. These boroughs contain Opportunity Areas (major development sites in the London Plan): Canary Wharf in Tower Hamlets; the Olympic Park in Newham; Battersea Power Station in Wandsworth; Hendon-Colindale in Barnet; Wembley in Brent; Old Oak Common-Park Royal in Ealing; and Croydon town centre. Given that there are only a few Opportunity Areas in Outer London, this leads to relatively low delivery in most Outer London boroughs, and points to the need for a wider strategy for Outer London development.

Meanwhile, there is low development activity in nearly all Green Belt local authorities, much lower than London boroughs and also below the average for the rest of the South East. Green Belt restrictions affect both local authorities in the commuter belt and also Outer London boroughs as well (e.g. Enfield, Bromley) with 27% of Outer London consisting of Green Belt land. We can confirm how rigidly Green Belt restrictions are being applied using the official statistics, which calculate that the London region Green Belt land area was 5,160km2 in 2011 and 5,085km2 in 2022 (DLUHC, 2023). Therefore, only 74km2 or 1.4% of Green Belt land was released over the decade (this figure is for all development uses, not only housing), which is strong evidence of minimal change.

One final impact of the Green Belt can be seen by mapping development in the last decade as shown below. In addition to the patterns of high development in Opportunity Area sites, and generally low development in the Green Belt, there is a ring of high development activity just beyond the Green Belt boundary. This ring includes dispersed car-dependent development in semi-rural areas, and the expansion of medium-sized towns and cities such as Milton Keynes and Reading. This pattern looks very much like Green Belt restrictions are pushing development beyond the Green Belt boundary, creating sprawl-type patterns in several authorities. One important caveat is that several South East cities have strong economies in their own right, particularly technology industries in the Oxford-Milton Keynes-Cambridge arc, creating local development demands in addition to London-linked demand.

Potential for Green Belt Reform
With Greater London consistently falling short of housing targets, reform of the Green Belt has been cited as a promising solution (see for example Mace, 2017; Cheshire and Buyuklieva, 2019). The release of Green Belt land could greatly boost development and ease prices. Green Belt reform could also be a substantial source of revenue for austerity-hit local authorities, if authorities are given the powers to purchase Green Belt land at current use value and benefit from the land value uplift (this is part of the Labour proposals).

Traditional objections to Green Belt development focus on rural land preservation. Yet the Green Belt is massive in scale – 12.5% of all the land in England is Green Belt. London’s Green Belt is 5,085km2, or three times bigger than Greater London. Medium density housing development would take up a small proportion of this land. For example, building 100k dwellings at a gross density of 40 dwellings per hectare would add up to 25km2, or less than 0.5% of the London region’s Green Belt. Appropriate Green Belt reform could simultaneously allow for a moderate increase in development and improve environmental aspects of the Green Belt – the current environmental record of the Green Belt is mediocre on key measures such as biodiversity – through green infrastructure funding and principles of Net Biodiversity Gain. The land preservation arguments against Green Belt development do appear to be solvable. There are however further sustainability impacts from housing development to consider, including transportation and housing energy impacts, as discussed below.

Sustainability Impacts- Travel
Transport is the largest source of GHG emissions in the UK – 26% of all emissions in the latest 2021 data (DBEIS, 2023). The route to Net Zero requires both the electrification of transport systems and a significant mode shift from private cars to public transport, walking and cycling (HM Government, 2021). Greater London is a UK leader in sustainable travel, but this is not the case for the wider London region, much of which is car dependent. The analysis here uses car ownership and commuting mode choice data from the 2021 census to create a Travel Sustainability Index, as shown in the table below, which classifies Greater South East residents into 6 travel classes of around 4 million people. The South East covers a very wide range of travel behaviours, from an average of 20% commuting by car and 62% zero car households in the most sustainable class 1; to as high as 87% car commuting and 6% zero car households in the most car-dependent class 6.

Travel Sustainability Classes Average Statistics (2021 Census data)

Travel Sustainability ClassTravel Sustain. IndexCar
Commute %
Public Transport Commute %Walk & Cycle Commute %Car Owning Households %Residential Net Density (pp/km2)Total Pop. in South East
145-8220.348.526.438.351.5k3.56m
230-4541.633.220.961.532.1k4.03m
321-3060.618.117.674.725.0k4.03m
415-2171.610.914.283.320.2k4.16m
510-1580.06.510.989.416.4k4.34m
61-1087.33.66.794.111.1k4.29m

Mapping the travel sustainability classes highlights the stark travel behaviour differences between Greater London and the wider region. The Inner London population-weighted average travel sustainability score is 51.6 (class 1), and Outer London is 32.1 (class 2). The Green Belt is overwhelmingly in car dependent classes 4 and 5, with an overall population-weighted average of 16.4 (class 4). The Rest of the South East has a population-weighted average score nearly identical to the Green Belt at 16.5, emphasising the disappointing levels of car dependence in the Green Belt despite its rail infrastructure and proximity to London.

The patterns shown in the above map clearly present a challenge for Green Belt development, as new housing in the wider region risks extending patterns of car dependence. Car dependent areas include some locations next to rail stations (proximity to rail stations has been advocated as a criteria for prioritising Green Belt land for housing). We can directly measure the travel sustainability of housing development from the last ten years by matching the output areas locations of new housing to the Travel Sustainability Index scores. This is shown in the scatterplot below, where Inner London boroughs score highly with this measure, followed by Outer London. Much of the housing development in the wider region scores poorly in terms of travel sustainability, including in areas with high housing development such as Bedfordshire and Milton Keynes.

Although travel sustainability is generally low in the wider region, there are trends identifiable in the above results that can be used as basis for guiding more sustainable development. Several towns and cities show moderately sustainable travel outcomes, including the Green Belt towns Luton, Watford, Guildford and Southend, and wider South East towns and cities Brighton, Reading, Oxford, Cambridge, Portsmouth, Norwich and Southampton. Generally, development in existing towns and cities is likely to be more sustainable than developing smaller settlements and more dispersed rural areas. There are also noticeably better results in active travel-oriented cities such as Brighton and Cambridge. Overall, if we want Green Belt housing development to minimise travel sustainability impacts, then it would be most realistic to achieve this by extending existing towns and cities, both within the Green Belt and in the wider South East. Promoting development in Outer London boroughs also looks to be an efficient strategy given generally good travel sustainability levels in Outer London, and that Outer London is 27% Green Belt land.

Sustainability Impacts- Energy
Another important sustainability impact of new build is energy use and carbon emissions resulting from space and water heating, which we can estimate from the Energy Performance Certificate data as shown below. CO2 emissions per dwelling are considerably lower in Inner and Outer London, with overall London emissions per dwelling around two thirds of the value for the Green Belt and Rest of the South East. This is only partly due to smaller dwelling sizes, as CO2 emissions per square metre in London are significantly lower as well. The lower emissions in London housing can be explained by the much higher proportion of flats and also the use of community/district heating, with three quarters of all new build in Inner London and 47% of new build in Outer London connected to community heating networks. The community heating approach is only efficient for high density developments. For medium and lower density developments, air and ground source heat pump technologies are a key technology for improving energy efficiency and replacing gas boilers. The statistics from 2011-22 are very disappointing on this front, at 4% of new build with heat pumps in the Green Belt and 6% in the Wider South East.

New Build Annual Average CO2 Emissions and Energy Summary 2011-2022 (Data: EPC 2023)

SubregionCO2 per Dwelling
(tonnes)
CO2 per m2 (kg)Energy Consumption
(kWh/m2)
Community
Heating %
Heat Pump % (air + ground)
Inner London0.9312.972.975.22.7
Outer London1.0415.387.246.92.8
Green Belt1.6018.7106.97.93.5
Rest of South East1.5317.297.75.75.9
All Subregions1.3416.392.527.04.3

The average annual CO2 emissions by dwelling are summarised at the local authority level in Figure 19 (note y axis starts at 0.5). Similar to the travel sustainability results, London boroughs have considerably more sustainable results. Town centres in the South East again are the best performing outside of London, including Cambridge, Southampton, Eastleigh, Reading, Luton, Watford, Woking and Dartford. As the chart shows average CO2 per dwelling, there is a connection between affluence and dwelling size, with higher income boroughs such as Richmond Upon Thames and particularly Kensington and Chelsea, having high emissions. Overall however, energy efficiency is much better in London boroughs and this is a further challenge for the sustainability of Green Belt development. Similar to the travel sustainability analysis, the results point to the extension of existing towns and cities, and Outer London development, as the most sustainable development strategies.

Summary
There is a widespread consensus that London needs to build more housing to meet demand and try to reduce record levels of unaffordability. Yet London has been consistently short of meeting housing targets for the last decade, despite substantial growth in Inner London. Green Belt restrictions do appear to have played a major role in constraining development, with low levels of new build in Green Belt local authorities, and in Outer London boroughs with extensive Green Belt land. There is also a significant price premium in Green Belt areas compared to the wider South East.

This analysis agrees with research advocating Green Belt reform. Travel sustainability conditions are needed to avoid this reform producing highly car dependent housing, such as has been occurring in Central Bedfordshire and Milton Keynes (where the East-West should have been built much earlier). Pedestrian access to rail stations is a sensible starting point for prioritising Green Belt land for housing, but it is not sufficient to produce sustainable travel outcomes in the Green Belt. The aim should be for new housing to have local access to a range of services (e.g. retail, schools), providing sustainable travel options for multiple trip types. Another related issue is the need for more sustainable energy efficiency measures in medium density new build housing. There is little evidence in the EPC data for adoption of key housing technologies such as heat-pumps and solar PV. Widespread adoption of these technologies is needed for sustainable development at scale in the Green Belt. Other studies have also identified poor design and planning in new build housing in the UK (see Carmona et al., 2020), and this needs to change as part of any plan to increase the volume of new housing.

Green Belt reform would have to come from national government, changing the very restrictive current National Planning Policy Framework to allow authorities with housing shortages to develop Green Belt land of low environmental quality near services, and to use land value uplift to fund services and affordable housing. It would be logical to give powers to the GLA (and other combined authorities) for the strategic coordination of this development within their boundaries, given the GLA’s strong track record on sustainable housing delivery. It is difficult however to envisage large scale change happening in the South East without national government also organising improved regional coordination and planning. This analysis identifies better travel sustainability outcomes for new build in larger towns and cities in the South East, and supports the urban extension model for development in the Green Belt. There are many candidate towns in London’s Green Belt for urban extensions, including Luton, Guildford, Watford, Maidenhead, Hemel Hempstead, Chelmsford, Basildon, Reigate and Harlow. This larger scale solution is politically more challenging, and would again require leadership and coordination from national government.

—————————–

Read the full CASA Working Paper.

This research is part of the ESRC / JPI Europe SIMETRI Project.

Tracking Gentrification in London and Manchester Using the 2021 Census Occupational Class Data

The Office for National Statistics have started to publish the more detailed tables from the new 2021 census. Of particular interest for my research are the variables related to gentrification. In this post I look at the occupational class data (Standard Occupational Class) to identify areas of London and Manchester with the biggest social changes.

The Changing Geography of London
Given that gentrification has been transforming Inner London for over half a century, some researchers had speculated these processes will start to slow with fewer and fewer working class districts left in Inner London that have not already been transformed. The 2021 census data shows however that gentrification has continued at pace between 2011-2021, with substantial changes in the geography of occupational classes, particularly in East and South-East London.

The map below shows the proportion of residents in the three most affluent occupational classes: Managers, Professionals and Associate Professionals in 2021. This is a useful overall indicator of gentrification (though note there are differences between these classes, and deprived populations can also be present in gentrifying areas). The map shows the long established structure of affluent Londoners clustered in Inner and West London, with radial corridors extending South West and North West through historic wealthy areas such as Richmond and Hampstead. The most dramatic changes with the 2021 data are in East London, and South East London, in areas such as Stratford, Walthamstow, Deptford and Greenwich, fitting with widely discussed social trends of these areas in the last ten years. The changes in East London are so substantial that we can identify new radial corridors of relative affluence forming in North East and South East London, mirroring the radial sectors in West London and forming a big red ‘X’ shape on the map. The traditional divisions between East and West are eroding over time with gentrification processes and the substantial transport and planning interventions in East London in recent decades. On the other hand, many of these areas in East and South East London still include high levels of deprivation alongside these gentrification processes, leading to a complex picture.

Below the 2011 and 2021 data are shown side by side with a slider. Gentrification is almost always a spatially clustered process, with newly gentrifying neighbourhoods forming next to existing affluent areas. You can see this very clearly in the maps below as the red areas follow a pattern of organic growth as they expand and strengthen from historic clusters-

We can also map change directly, as shown below. This highlights just how concentrated gentrification is in East and South East London. Some major development sites are picked out, such as the Olympic Park at Stratford, and the developments at North Greenwich. New build gentrification is clearly playing a significant role. But many of the changes are spread across districts such as Walthamstow, Leyton, Bow, Peckham and Deptford, and these changes will be through turnover in the historic housing stock alongside new build housing.

An important difference in 2021 compared the 1990s and early 2000s appears to be more social change in Outer London, at the urban fringe and extending into the more rural Home Counties. This is particularly noticeable in South East London (Bromley, Orpington, Bexley), as well as other parts of Outer London (Barnet, Ruislip, Romford, Coulsdon). This will likely be linked to the extreme unaffordability of Inner London, but the 2021 census may also be picking up some of the demand for larger houses with gardens in 2020 and early 2021 following the pandemic.

On the topic of whether gentrification processes are displacing lower income populations in London, it is not possible to answer with this data. A useful overall perspective comes from looking at the profile of all occupational classes for Greater London in 2011 and 2021. We can clearly observe in the graph below a very large increase in the Professional class, and a big increase in the Management class (Associate Professional is static- this is on average the youngest class, and is probably a sign that this group has been more affected by the price/rent increases). The remaining classes do not however show a decline, they are largely static (except for Administrative, on average the oldest class). This implies that the overall process of increased professionalisation in the last decade has been more about new populations moving to London rather than lower income classes being further displaced, but this conclusion is speculative and migration data would be needed to investigate this. Note also that the professionalisation pattern is clearly visible in the occupational class profile of England and Wales, showing that the growth in knowledge jobs is affecting the entire economy, not just big cities like London.

The Wider Picture Across England
The scale and economic dynamism of London typically makes the capital an outlier compared to other UK cities in terms of processes of urban change. However, devolved governments in city regions such as Greater Manchester and the West Midlands have brought substantial new investment and developments in their cities over the last decade, and we would anticipate some similar processes of social change to be happening. If we look at percentage point change in professional classes for England and Wales (the same measure as the change map above, but this time at local authority scale), we can see the top ranked local authorities are mainly in East and South East London. A crucial difference however is the prominence of Greater Manchester boroughs, including Trafford and Salford. This indicates that major social change is occurring in Manchester. Additionally the West Midlands is also picked up within the top 25 local authorities. Note the national average change in Professional classes is +5.4 percentage points between 2011-2021, so the change towards professional and service jobs is occurring across the economy as a whole.

Local Authorities Ranked by Percentage Point Change in Profess. Classes 2011-2021-

RankLocal AuthorityRegionProf. % 2011Prof. % 2021Percentage Point
Change 11-21
1Waltham ForestLondon (East)39.250.511.3
2Trafford Grt. Manchester48.158.410.3
3Newham London (East)32.041.59.5
4Salford Grt. Manchester36.145.59.4
5Dartford London (OMA)37.346.69.3
6Bromley London (SE)50.659.89.1
7Bexley London (SE)36.745.89.1
8Greenwich London (SE)44.253.18.9
9Lewisham London (SE)48.857.48.5
10S. Cambridgeshire East of England52.360.88.5
11Stockport Grt. Manchester44.352.68.4
12Havering London (East)36.945.38.3
13Warwick West Midlands51.960.18.2
14North Tyneside Tyne & Wear38.346.38.0
15Southwark London (Inner)53.861.88.0
16Broxbourne London (OMA)35.243.28.0
17Epsom and Ewell London (OMA)51.459.27.9
18Sutton London (SW)43.951.77.8
19Hackney London (Inner)56.564.27.8
20Mid Sussex South East48.055.77.7
21Tonbrg. & Malling South East44.151.77.7
22Exeter South West39.246.87.6
23Bromsgrove West Midlands48.255.77.5
24Solihull West Midlands45.452.97.4
25N. Hertfordshire London (OMA)49.657.07.4
26Sevenoaks London (OMA)48.155.47.3
27Epping Forest London (OMA)45.853.17.3
28Bristol, City of West of England44.952.17.2
29Ribble Valley North West45.252.47.2
30Cambridge East of England57.965.17.2

Occupational Class Change in Greater Manchester
It is clear from the table above that alongside London, there are considerable changes in the occupational class geography of Greater Manchester ongoing. The borough of Trafford ranks second in the above table, while Salford is at four and Stockport at eleven. Repeating the mapping exercise below, we can see that occupational class changes are widespread across Greater Manchester, particularly to the west and south of the city centre. In economic terms this is a positive sign that Manchester’s knowledge economy is growing and attracting skilled workers, an important trend given generally low productivity for many UK cities beyond London. On the flip side however, Manchester residents will be less impressed if house prices and levels of inequality start to resemble the extreme situation in the capital.

We can repeat the change map again for Greater Manchester. Some big development sites appear to be picked up in Salford, Ancoats and Sale (the prominent development site of Salford Quays appears to have already gentrified before the 2011 census). But the growth in more affluent occupational classes is not confined to these development sites, it is occurring across most of Greater Manchester and, similar to London, includes many suburban areas. It is only really in Bolton, Rochdale and Oldham where there are few signs of change identifiable.

Summary
The occupational class data from the 2021 census shows that evolution towards knowledge economy and service jobs continues at pace, with Professional and Management classes showing by far the highest growth levels across England and Wales. London has continued to experience significant gentrification levels, with the spatial focus in the last decade concentrated in East and South East London. London centres such as Walthamstow, Stratford, Deptford and Lewisham have changed dramatically, so much so that we can see two new radial corridors of more affluent populations forming in North East and South East London, mirroring the long established structure of West London.

Gentrification is by no means confined to London, and indeed Greater Manchester has several of fastest gentrifying local authorities in England and Wales, particularly the boroughs of Salford and Trafford. This is largely reinforcing the structure of wealthier populations being concentrated to the south and west of Greater Manchester, and in the city centre.

This analysis has looked only at the new occupational class data, which does provide some interesting insights. To look into these issues more deeply however we would need to add analysis on housing markets, tenure, deprivation, age and migration data.

Post-Pandemic Changes in Travel Behaviour: Evidence from the National Travel Survey England 2021

The pandemic and subsequent lockdowns have seen the largest and most sustained disruptions to travel behaviour in most of our lifetimes. Stay-at-home policies have fuelled a dramatic increase in remote working, and wider online substitution of other activities such as shopping and socialising. In sustainability terms, the pandemic has severely hit public transport and incentivised car travel, but has also likely reduced travel distances overall as well as encouraging new patterns in active travel. The big question is to what extent pandemic related changes are turning into longer term shifts in travel behaviour patterns.

This post looks at timeseries travel data across the last three years, and then summarises results from the recently published National Travel Survey data 2021 for England, with a particular focus on trip purpose and differences between London and England as a whole.

Transport Use Timeseries Data from DfT
The Department for Transport have continually updated a very useful timeseries on how busy different transport modes have been in England throughout the pandemic. This index integrates many different datasets and is intended as a broad summary of trends (see methodology here). The graph below summarises this data, which is indexed to February 2020. The overall picture is of huge disruption in 2020, continued disruption with a transition towards recovery in 2021, and then what looks like settling into a new normal in 2022.

The chart paints a mixed picture in sustainability terms. Car travel has been the fastest transport mode to recover after each of the national lockdowns, and was back to near normal levels as early as summer 2021. While this is a challenge going forward, it could potentially have been worse. The pandemic could have resulted in substantial increases in car travel. Instead, there is a minor reduction to about 96% car use in the DfT data, sustained into 2022 (in per-capita terms this reduction will be more substantial given population increases). Note the motorised vehicle index that includes freight reaches 100% of pre-pandemic levels in 2022, possibly due to more online delivery traffic.

Public transport has been much slower to recover, falling to less than 50% of passenger numbers in 2020, increasing substantially throughout 2021 and then settling around 70-85% of pre-pandemic passenger numbers in 2022. Rail and tube travel were hardest hit in 2020 due to the widespread fall in commuting and these modes have taken longer to recover than bus travel. It is difficult to gauge whether public transport levels have now levelled off around the 75% level, or will continue to recover further in 2023 (the rail and tube strikes in summer 2022 may have curtailed further increases).

A positive sustainability story comes from the cycling data from the DfT. This is a less reliable metric, but nonetheless indicates growth in active travel, albeit from a low base in 2019. The annual variation in cycling in the DfT data between 2020 and 2022 is interesting. The initial 2020 increase in cycling makes sense, as there was a big growth in active travel for households locked down in their local area. This falls to 2019 levels in 2021, and then rebounds in 2022. Perhaps the fall off in new cyclists has given way to more practical longer term adoption of cycling in 2022.

National Travel Survey Data 2021
The results for the National Travel Survey 2021 data were released at the end of August 2022. This long running survey records full travel diaries of thousands of residents in England, allowing analysis of topics such as trip purposes, walking trips and demographic analysis. There have been some data gathering challenges during the pandemic (see data quality report). The overall picture from the DfT chart below is that the 2021 NTS data is very similar to the 2020 data in terms of per person trips and annual distance recorded. This suggests that the NTS 2021 is not picking up much of the 2021 travel recovery that is shown in the DfT timeseries data we discussed above.

We can break down the annual trip distance per person by transport mode. The chart below compares the years 2019, 2020 and 2021. The results backs up the conclusion that, at the national level, the 2021 data is very similar to 2020. There is big reduction in car miles of 30%, while public transport levels are at around half the levels of 2019. There is a small increase in walking and cycling distances, though this falls back to 2019 levels in 2021.

Interestingly, the equivalent chart for London shows a very different picture in terms of travel behaviour responses. Car use increased marginally in 2020 (probably substituting for public transport trips) then falls in 2021, though this reduction is lower than the national picture. Bear in mind London mileages are around a third of the national average, so there may be fewer optional trips to cut. Meanwhile, public transport records a significant recovery in 2021 for rail and underground, much closer to the DfT time series analysis shown above (note the bus recovery is lower than expected). Walking and cycling follows the national picture by increasing in 2020 and then falling in 2021, though note that the 2021 cycling level is substantially up on the 2019 figure.

Overall the broad 2021 National Travel Survey results are fairly close to the 2020 results at the national level. In comparison to the DfT Transport use timeseries, it appears to be closer to the 2020 picture rather than the 2022 trend of a substantial recovery in transportation use. So we may have to wait for the National Travel Survey 2022 to confirm which changes are really sticking in terms of longer term behaviour. The London data is interesting, as it much more clearly shows a recovery in public transport travel in 2021, and a different picture for changes in car mileage, as well as a substantial increase in cycling.

Trip Purpose Analysis
An important question is the type of trips most affected by the pandemic, and whether these changes are becoming longer term trends. The charts below show the trips per person per year and total distance per year between 2019 and 2021. As expected commuting is taking the biggest hit in terms of trips and distance, falling by 36% in distance terms and with only small signs of recovery in the 2021 NTS data. Drops in business travel are even larger, more than halving. Interestingly shopping trips have taken nearly as big a hit as commuting, with distances falling 26%. There has been a widespread trend towards online supermarket deliveries and online shopping more generally post-pandemic and it looks like this behaviour has continued into 2021. The 2021 NTS even shows shopping trips and distances falling again in 2021 from the 2020 level. Alongside commuting changes, shopping travel behaviour looks to be the major trip type that has been cut, possibly for the longer term.

Outside of commuting and shopping, other trip types with big reductions include holidays, business, and entertainment. In contrast day trips increased and walking trips nearly doubled (though both fell back marginally in 2021 from the 2020 peak). Visiting friends at their home also continued during the pandemic, with a more minor reduction in trips and distances.

Finally we repeat the distance trip purpose chart for London. Commuting takes an even bigger hit in London, falling by 48% in 2020, then moderately picking up in 2021. Business trips fell by a huge 67% and there is little sign of recovery. In contrast some trip types that declined in 2020 are nearly back at 2019 levels, such as education and education/other escort trips. The trips with the biggest increases in 2020, visiting friends at private homes and day trips, have also returned to their 2019 levels in the 2021 data. Walking trips have however remained considerably above their 2019 level, indicating that the active travel increase is looking more stable for London.

Summary

The DfT timeseries data shows travel patterns settling into a ‘new normal’ after more than two years of disruption. Car travel is only marginally down on pre-pandemic levels, while public transport is around 70-85% of the passenger numbers from 2019. There are some encouraging signs for active travel after increases in leisure walking and cycling trips, though the situation is dynamic.

The National Travel Survey 2021 data records a similar picture overall to 2020 in terms of major disruption- distances and trips down substantially. Car miles are down 30%, though the DfT timeseries data suggests this will not be the case in the 2022 data. Public transport remains around half of 2019 levels.

The trip types with the biggest reductions are commuting and business as expected, but also shopping (and the related travel type of personal business). Shopping trips fell again in 2021, and this looks, like commuting, to be a case of significant online substitution, possibly long term.

The London NTS data is very interesting, with some significant differences. Car use appears to have marginally increased in London in 2020, before falling in 2021 below 2019 levels. Public transport has staged a major comeback in London in the 2021 data, and there is also a sustained increase in cycling. The NTS data is also disaggregated into urban/rural categories and it would be interesting to test whether these trends are London specific or shared with other major English cities.


Planning a Cycling Revolution for Post-Lockdown London

Overview
London and the UK as a whole have been severely affected by the Covid-19 pandemic, creating multiple health, social and economic crises. Social distancing requirements have drastically reduced the safe capacity of public transport services. The London Mayor and Transport for London (TfL) have quickly responded with a radical plan for transforming Inner London into a walking and cycling city, with major streetspace reallocation and restrictions on car use. Where should this new active travel infrastructure be prioritised? Will it substantially change travel behaviour for the better? This article looks at plans for new cycling infrastructure in Inner London, and includes recent UCL research by Nicolas Palominos.

The Green Active Travel Response to the Covid-19 Pandemic
The concentration of people, activity and global connections in cities is normally their greatest asset, yet now is the source of acute risk and vulnerability during the coronavirus pandemic. Rail, metro and bus systems enable millions of daily trips to be made efficiently and sustainably, but their crowded nature is incompatible with social distancing. Recent estimates of how many passengers can safely use buses, trains and metro systems in London while enforcing a 2 metre social distancing rule are around 15% of full capacity. This restriction is devastating for transit cities to function, preventing people getting to work, school and basic services; as well as crippling the fares revenue for public transport providers. Although there are plausible scenarios where the 15% limit could be moderately relaxed (such as through mandatory mask-wearing and temperature screening, or an adjustment of the UK social distancing rules to 1.5m/1m) we are effectively looking at months (in the worst case years) with public transport operating at a severely reduced capacity.

With public transport now hampered for the short-to-medium term, there is a real danger that there will be a big increase in car use as lockdown restrictions are eased, undoing much of the recent progress towards sustainable cities and tackling urban problems of congestion, poor air quality, carbon emissions and obesity. The alternative is to dramatically increase walking and cycling through a major reallocation of street space to these active travel modes. Measures for new cycle and pedestrian lanes have recently been proposed by many cities including Milan, Paris, Brussels and Bogota, and are being widely discussed in many more. The aim is to provide safe and healthy travel alternatives to increased car use, and to enable cities to continue to function with public transport restrictions. London Mayor Sadiq Khan has joined these progressive cities by advocating an active travel transformation for London with the Streetspace for London plan.

London’s Fragmented Cycle Routes
Cities that have achieved very high rates of cycling, such as Amsterdam and Copenhagen, have done so with comprehensive networks of segregated cycle lanes, allowing all residents to cycle safely, not just experienced cyclists. London has been struggling to catch up with these cities, and still has a fragmented and incomplete network of cycle lanes. The map below shows Inner London cycle lane data in 2019. The dark blue lines are physically segregated cycle lanes (i.e. a physical barrier between the cycle lane and the road). These are mainly found on CS2 (Cycle Superhighway 2) in East London, CS3 (the only complete East-West route through Central London), and parts of CW6 (Cycleway 6) which is the main north-south link across Blackfriars Bridge that has some sections in Central London that are still under construction.

Outside of these segregated routes there is a scattered patchwork of cycle lanes that are based on road markings without a physical barrier with the carriageway, shown in light blue on the map. There are also bus lanes on many major roads (dark red on the map) which offer some protection for cyclists, but are a long way from the safety of fully segregated lanes. Overall Inner London’s cycle network has many gaps that need filled, particularly in Central, West, North-West, North-East and South-East London. This infrastructure gap sits in sharp contrast to the aim of drastically increasing cycling during the post-lockdown period. The lack of segregated routes increases the risk of cycle collisions with cars, and will discourage public transport users from making the switch to cycling.

The Proposals from the Mayor and TfL
In the Streetspace for London plan, the Mayor has proposed developing a network of new walking and cycling routes to allow Londoners to walk and cycle while social distancing, and to redirect public transport trips to active travel rather than driving. Cycling will be critical for public transport substitution, as most tube and bus journeys are 4-10km, considerably longer than typical walking distances (discussed more below). Given the fragmented nature of current cycle routes, major changes and interventions are required to achieve these aims.

The highly ambitious nature of the proposals were made clear last week with a major plan for new Car Free routes to be introduced in the City of London (below). This plan would transform many of London’s busiest roads into bus, cycling and walking corridors, radically improving cycle access across Central London, particularly to major rail stations. It includes:

  • Completing Cycleway 6 with a car free Farringdon Road leading to Kings Cross Station;
  • A car free Waterloo Bridge, leading to a whole new car free north-south route via Kingsway and Southampton Row to Euston Station;
  • A car free London Bridge, leading to two segregated routes, the first via Bank to Moorgate, and and the second via Bisohopsgate to Liverpool Street station;
  • Upgraded east-west routes, with a car free Theobalds Road to Old Street; and improved cycle provision on High Holborn and Cheapside (could this be extended west to Oxford Street, and east to meet Cycleway 2 at Aldgate?);

These proposals show a comprehensive commitment to the active travel plan, and include major restrictions on driving to make this happen. In addition to the Car Free routes, the Congestion Charge and low emission zones have been reinstated, and the cost of the Congestion Charge will rise to £15, and hours of operation extended to 7am-10pm 7 days a week.

The Central London plan also shows that the City of London (the borough authority that controls London’s financial district) share the Mayor’s vision, as this proposal can only happen with their close cooperation. Indeed the City of London had already developed a longer term plan for removing cars from most of the City, and this proposal fits closely with their vision.

While Central London is vital for the Mayor’s active travel plans, the vast majority of journeys begin outside the City. Clearly a much wider vision for all of London is needed. TfL have stated they will create 30km of new permanent cycle lanes this summer. They have released a London-wide map of proposed new ‘Streetspace Routes’ on their website (below). While this map is very much in development (it does not yet have the City of London routes above added), there are several very significant proposals, including-

  • Segregated cycle lanes on Euston Road- a vital busy highway connecting major rail stations (Paddington, Euston, Kings Cross), as well as linking to the north-south routes in the above Central London map. The Euston Road proposal extends all the way west to Acton;
  • adding a further set of new routes in West London, including Cycleway 9 from Hounslow to Brentford and Kensington Olympia;
  • speeding up the completion of CW4 from London Bridge to Greenwich and Woolwich in South East London;
  • improving CS7 to Brixton and Clapham in South West London;
  • completing a North-West link from Regents Park to Golders Green;
  • adding a new link from Hackney to Canary Wharf;

Predicting Where Cycling Demand is Likely to be Highest
While there are lots of excellent proposals in the TfL map above, it does not yet form a complete network (it also does not differentiate between the quality of existing cycle routes which are highly variable). We can use network analysis to consider where cycling demand is likely to be highest, and where new infrastructure should be prioritised. The analysis below by Nicolas Palominos at CASA is based on shortest paths between underground and rail stations, and is indicative of where active travel trips are most likely to be made if passengers are prevented from taking the tube/bus/train (see full working paper here). The map highlights the core network of Inner London’s most prominent links, including its oldest Roman Roads- Edgware Road, Kingsway, Oxford Street. Promisingly, there is considerable overlap between these critical shortest path routes and the cycle network proposals by TfL. We can see the importance of the new north-south Waterloo Bridge-Southampton Row link for example; Euston Road’s importance is clearly shown; as is Theobald’s Road to Old Street. TfL have completed similar analysis in their Strategic Cycling Analysis from 2017, and we can assume this is guiding their plans.

There are however some important links missing highlighted through the network analysis. The most significant missing link is London’s most important east-west route that runs along Hyde Park through Oxford Street all the way to Cheapside and the City (following the route of the Central Line). The City of London proposals cover the eastern section of this vital route, from High Holborn to Bank. There needs to be similar cycling upgrades for the western section: Oxford Street, Bayswater Road and Holland Park Avenue. This intervention requires the Mayor to cooperate closely with the City of Westminster authority. Politically this is difficult, as Westminster has been blocking high profile proposals from the mayor in recent years, most notably the pedestrianisation of Oxford Street. Coming to some agreement will be essential for the western expansion of the cycle network to be joined together effectively.

Other key routes that are not yet part of the proposals include Edgware Road; Peckham Road; Essex Road; Old Kent Road; City Road; Commercial Street; Kingsland Road; and Seven Sisters Road amongst others. These are discussed further in the working paper. Edgware Road is currently the main north-south driving route that avoids the Congestion Charge, and giving space to cycling would be difficult to implement here (although Park Lane is included in TfL’s plans, and indeed the Park Lane cycle lane is already installed on the western carriageway adjacent to Hyde park). The Swiss Cottage to Golders Green link looks like the proposed north-west alternative to Edgware Road, and would benefit from completion through Regents Park to the Euston Road link. The network analysis strongly agrees with the Euston Road cycle provision, though in this analysis this critical link continues further to Pentonville Road, City Road and Commercial Street encircling the City.

Overall, the TfL Streetspace proposals look very promising, and need to be further linked together and expanded as discussions with more boroughs continue. This will also need much more emphasis on Outer London centres and local shopping and school routes, important topics which are not covered in this article.

Estimating the Number of Cycling and Walking Trips Post-Lockdown
What might the the number of trips by different travel modes in London look like in the coming months? This is highly uncertain. Some modelling figures from Transport for London quoted in press releases are anticipating radical changes in behaviour, up to a ten times increase in cycling trips, and up to a five times increase in walking trips. Are these figures realistic?

The chart below shows the distribution of trips pre-lockdown (from TfL Travel in London Report 12), and a series of post-lockdown guesstimate scenarios to discuss where we might be heading. Normally in London we are looking at around 27 million trips per day, with 9.5m by transit, 10m by car, 7m by walking and 0.7m by cycling. The lock-down figures in the chart below are based on TfL’s statement that underground passengers have been at 5% of normal levels, and car traffic has been radically reduced (though is picking up more recently). We don’t know overall walking and cycling levels during lock-down, but given workplaces, schools and most shops are closed, they have likely fallen.

What happens next is massively uncertain. During the lockdown, everyone except for key workers have been staying at home. This will change as the lockdown lifts, depending on the percentage of people who continue to stay at home. There are various reasons for continuing to stay at home: working from home; looking after children at home (particularly if schools remain closed or are only partially opened); and people who are furloughed or become unemployed. Two scenarios are shown above, with 50% of people continuing to stay at home and 20% of people continuing to stay at home. The 50% figure is likely to be closer to reality for at the least the next few months, with infection rates still significant and most schools and workplaces still closed.

Using the 15% social distancing capacity limit estimated by TfL, we can see that 8 million daily public transport trips (or 4 million return trips) can no longer be made. The question then is what happens to these trips. The Active Travel scenarios shown above are based on a big increase in cycling and walking trips remaining constant or increasing. The Car Travel scenarios in contrast estimate what will happen if these trips do not switch to active travel, and significantly more driving occurs. This results in more car trips than pre-lockdown and consequent problems of increased congestion and air pollution.

How realistic is it to assume that public transport trips could switch to active travel modes? One basic way to consider this is using average trip distances by travel mode, as shown below. It is clear that National Rail trips are often long distance, and substitution with active travel is likely going to be unrealistic for most of these trips. This seems to be the assumption in the TfL plans, as the Car Free Streespace corridors prioritise linking up the biggest mainline railway stations. The idea is that mainline rail trips will change the next leg of their journey to cycling and walking, rather than tube or bus. There will likely be significantly more demand for cycle parking/hire facilities at stations and for taking bikes on trains.

The most popular public transport mode in London is the bus, and bus trip lengths are very close to average cycling trip lengths, so prospects for active travel substitution are much better for these trips. Average Underground distances of just under 10km are potentially workable as cycling trips of around 30-40 minutes (or quicker with electric modes), so some substitution is possible for these trips. The network analysis in the working paper found average trip lengths for shortest path between stations in Inner London to be just over 10km. The extent to which public transport trips can be substituted with walking trips is highly questionable for distances above 5km, as this will take most pedestrians an hour or more. The average walking trip in London is less than 1km. This likely makes cycling the key active travel mode for most public transport substitution, as well as there being significant opportunities for expanding recent micromobility options such as e-bikes and e-scooters.

Summary
The Mayor and Transport for London have proposed a radical Streetspace for London plan to redirect trips to walking and cycling as we move out of lockdown, and try to avoid a huge increase in car trips due to social-distancing capacity limits placed on public transport services. The Mayor and his team are essentially using this crisis to rapidly speed up active travel plans for London that were on the drawing board for the next decade. These plans are not empty words, they are backed up with a comprehensive transformation of many Central London routes to car free routes, as well as further restrictions on car use through the Congestion Charge. These measures are already being implemented.

At present, the proposed cycle network has lots of excellent proposals, yet remains incomplete, missing key links such as Oxford Street, as well as lacking proposals for linking Outer London centres. The proposals require support from London’s borough councils to be developed, and so far have support from key boroughs such as the City of London (with other pro-cycling boroughs such as Hackney and Camden also likely to be supportive). Hopefully more agreements will be reached with boroughs such as Wesminster, otherwise the new streetspace links will miss key parts of Inner London.

Open Source Public Transport Accessibility Modelling

The RGS-IBG annual conference has been on this week, and I presented as part of a series of geocomputation sessions arranged in advance of the 21st anniversary Geocomputation conference in Leeds next year. The topic was current CASA research from the RESOLUTION project, looking at developing fast and consistent methods of measuring public transport accessibility between different cities.

For this task I have been testing the OpenTripPlanner software with encouraging results. PDF of the slides are here.

The data used for the London analysis comes from the Traveline public transport timetable data. The image below shows an example accessibility measure of jobs accessible within 1 hour’s travel time leaving at 8am.

LondonResolution_PT_Accessibility

What can the next mayor do to tackle London’s hazardous air pollution?

If news emerged that a virus was killing thousands of vulnerable Londoners every year then there would justifiably be public alarm, followed by swift political action. Yet the impacts of this imaginary scenario are similar to what air pollution has been inflicting on Londoners for many years, while the political response has been slow. According to the most up-to-date and comprehensive research, air pollution reduces Londoners’ life expectancy equivalent to the death of 9,400 people of average age every year (5,900 due to NO2 and 3,500 due to PM2.5) as well as exacerbating respiratory diseases in vulnerable populations. Despite the severity of these impacts, it has become standard practice over the last decade for national government and the London Mayor to gloss-over the problem, downplay continued breaches of European law, and for politicians to delay taking any significant responses.

The current London mayor, Boris Johnson, has been slow to face up to the challenge. His tenure began by removing the western extension to the Congestion Charging Zone, thus increasing vehicle numbers in Inner West London, and opting out of using the Congestion Charge to tax the most polluting vehicles. This would have boosted the adoption of hybrid and electric vehicles (still only a meagre 1% of new cars) and reduced heavy emitters in Central London. Furthermore Johnson has not succeeded in comprehensively upgrading London’s bus and taxi fleet to hybrid and electric vehicles, instead embarking on an expensive new Routemaster project which still produces substantial emissions and currently makes up a minority of the overwhelmingly diesel bus fleet.

NO2 Annual concentration in London 2010, modelled by the London Atmospheric Emissions Inventory. All of Inner London and many major roads in Outer London greatly exceed the EU limit.
NO2 Annual concentration in London 2010, modelled by the London Atmospheric Emissions Inventory. All of Inner London and many major roads in Outer London greatly exceed the EU limit.

As recently as 2014, Johnson was still playing down the air pollution problem, in the face of strong evidence of London’s busiest streets like Oxford Street having amongst the highest concentrations of nitrogen dioxide in the world. For much of his time as mayor, he has assumed that the issue is not a public priority, and that driver and transport demands trump health concerns. This approach looks more questionable by the day. Evidence continues to mount that air quality is comparable in its health impacts to passive smoking and obesity. The consequences of the current Volkswagen scandal are still emerging as the huge gap between the advertised environmental performance of diesel vehicles and what we are really breathing in our cities is revealed. And the full costs of poor air quality are only beginning to be counted (e.g. billions of pounds added to NHS bills).

Looking to the future, London must now tackle the air pollution problem with a new mayor in the upcoming 2016 elections. The scope for change looks positive, as the main candidates on both the left and right have been openly discussing the need for change. What then could a new mayor do to address air quality and improve the health of Londoners?

Pricing Out Polluting Vehicles with the Ultra Low Emission Zone
To be fair to Boris Johnson, he did finally respond to pressure and announce a significant air pollution policy in 2013, dubbed the ‘Ultra-Low Emissions Zone‘. The ULEZ is set to come into effect in 2020 and essentially uses the Congestion Charging infrastructure to tackle the most polluting vehicles (similar to what Livingstone proposed way back in 2006). The question is whether the ULEZ goes far enough. It’s based on Euro emission standards, which measure NO2 and PM10/2.5 as well as CO2 emissions. It correctly targets diesel vehicles, requiring them to meet the Euro 6 standard, which only came into force in September 2015, so almost all current diesels on the road would have to change or pay the charge. This means that the main source of NO2 emissions will be appropriately targeted.

The current Congestion Charge boundary will be the basis of the Ultra Low Emissions Zone (map by TfL).
The current Congestion Charge boundary will be the basis of the Ultra Low Emissions Zone (map by TfL).

There are limitations however. The charge is only going to be £11.50 (except for large buses and HGVs), so it likely many diesel users will continue to drive into Central London and pay the charge. Furthermore the ULEZ will only affect Central London; the rules on diesel taxis and private hire vehicles have not been decided; and ULEZ zone residents get an overly generous exemption until 2023.

The next mayor will have a number of options that could be pursued if they want to be bolder than Johnson’s ULEZ proposal. These include increasing the ULEZ charge and/or Congestion Charge, bringing the ULEZ implementation forward to an earlier date, and potentially reintroducing the Congestion Charge Western Extension. All of these would make significant improvements to air quality, but would be controversial with drivers, many of whom were mis-sold diesel vehicles in the past as a supposedly environmentally benign option. The mayor may also want to re-examine the wider Low Emission Zone (LEZ) that tackles very polluting vehicles entering the whole of Greater London, as this affects the entire city and has not changed since 2012.

Euston Road, one of London's busiest and most polluted routes with NO2 annual concentrations typically twice the EU limit (photo by D Smith).
Euston Road, one of London’s busiest and most polluted routes with NO2 annual concentrations typically twice the EU limit (photo by D Smith).

Banning Diesel?
A more radical approach currently being proposed for Paris is to ban diesel cars all together. This would certainly make a huge improvement to air quality. The problem for London would be that the city’s bus and taxi fleet would fail this restriction, and there would likely be a backlash from thousands of car and van drivers. This would be a very confrontational approach for a new mayor.

The more pragmatic solution for London would be to work with the ULEZ framework, considering stricter measures and higher charges, and implementing the policy earlier. One very important issue for the new mayor is emerging from the current Volkswagen emissions scandal. It looks like the latest Euro 6 diesels produce significantly higher NO2 emissions in real world driving conditions compared to the misleading testing conditions. If this is the case then the proposed ULEZ will be much less effective in improving air quality (as Euro 6 diesels will be exempt from the charge). The ULEZ may have to charge all diesel vehicles, regardless of their Euro rating. This decision would need to made very early, so that there is sufficient time for car users to adjust behaviours accordingly.

Pedestrianising Streets and Upgrading the Bus Fleet
Oxford Street is London’s busiest pedestrian street and has some of the worst NO2 pollution in Europe. A response that is gaining popularity is to pedestrianise the whole street. Certainly this would be an iconic change to both the image of London, and to the experience of the city for thousands of Londoners and tourists. The challenge for this measure is avoiding creating bus jams at either end of Oxford Street, and handling the extra demand levels that would be placed on the already congested Central Line. These challenges are not necessarily permanent however, as the arrival of Crossrail in 2018 (which follows the west to east Central Line route through Inner London) has been described as a ‘game changer’ that makes pedestrianising Oxford Street a realistic option. The new mayor should certainly pursue this possibility.

The wider challenge for the mayor is not to just think about Oxford Street, but to accelerate the upgrading of the entire bus and taxi fleet towards zero emission vehicles and develop wider pedestrianisation policies. This would improve air quality for all of London’s high streets. London is still at the trial stage of pure electric double-decker buses, which represents disappointingly slow progress considering how long we have known about air pollution problems. There’s been better progress on electric/hydrogen single-deckers. Considerable investment will be needed to upgrade the bus fleet, with decision-making based on real evidence and value-for-money. Johnson’s Routemaster project has failed both these criteria, and better leadership is now required.

Heathrow Third Runway
All the main candidates for the London Mayor oppose the expansion of Heathrow, with air pollution alongside noise pollution amongst the most important factors. You can see how Heathrow already dramatically increases emissions in West London in the NO2 annual concentration map at the top of this article using the London Atmospheric Emissions Inventory data. This is due both to emissions for aircraft engines, and the thousands of cars driving to and from Heathrow everyday. The challenge will be how effectively the new mayor can challenge the UK government to reject the Heathrow expansion option.

Overall, the issue of air pollution has gained unprecedented prominence as we approach the 2016 mayoral elections. The main candidates need to respond accordingly in their manifesto commitments, with London having a lot of catching up to do after eight years of little change. It will be interesting to see which candidates are prepared to be bolder.

 

 

 

 

Is Developing the Greenbelt the Answer to London’s Housing Crisis?

Following rapid growth and a chronic lack of new development, housing affordability has reached crisis levels in London. Median house prices are at £300k (8 times median household income) while average prices have passed half a million. London is now amongst the most expensive cities in the world, a situation with severe consequences for economic competitiveness and for inequality. Rents continue to increase faster than wages, ownership is being restricted to affluent populations and the social housing waiting list now stands at 345,000 households, nearly double the figure from 15 years ago.

Recent development figures have been very low. London needs at least 50,000 new homes per year to meet demand, yet only 21,000 were built last financial year, and this figure has been below 20,000 for all of the last five years. Nationally around 200,000 houses a year are needed, and we are building around 100,000. These figures amount to a comprehensive failure of national and mayoral policy.

Clearly substantial changes are needed. Last week the Centre for Cities outlined how this change could happen, launching their ‘Building Change: Delivering Homes Where we Need Them‘ report. It convincingly argues that we are failing to deliver homes where demand in greatest- in the vicinity of rapidly growing towns and cities- resulting in spiralling housing costs.

The report makes a range of positive recommendations for enhancing local authority capacity in relation to delivering new housing, including the streamlining and reform of compulsory purchase orders for faster development and allowing cities to benefit from uplift values in land; allowing local authorities to borrow more with longer term commitments from central government; and enabling greater cooperation between local authorities to tackle city-region challenges. Best practice examples are provided from local authorities that have successfully delivered new housing, such as Bristol and Milton Keynes. The report also provides a useful summary on brownfield capacity, with for example the potential for 350,000 homes on brownfield sites within the GLA.

Releasing Greenbelt Land for Development
By far the most politically controversial aspect of the report is the recommendation to reconsider greenbelt development restrictions. Prioritising brownfield land has been a central foundation of compact city planning over the last twenty years, directing development towards inner city regeneration and away from rural areas. Yet brownfield land can be expensive to develop, and in combination with greenbelt restrictions, land prices have soared. These spiralling land costs have significantly curtailed new housing.

Opportunities for housing on ‘Usable Greenbelt Land’ around London are mapped in the report (figure below), based on locations within 2km of rail stations. The Centre for Cities estimate that there are opportunities for 430,000 housing units on greenbelt land within the GLA, and opportunities for a massive 3 million housing units on the London greenbelt beyond the GLA boundary. This huge housing capacity could effectively solve London and the South East’s housing crisis. So is developing on the greenbelt the answer?

Opportunities for new housing on London greenbelt land, Centre for Cities Delivering Change Report 2014.

Usable Land and the Value of the Greenbelt
The gigantic housing development capacity figures quoted in the Centre for Cities report certainly demand attention. As housing development is such a central issue for planning in the South East, I have decided to repeat the Centre for Cities spatial analysis from a sustainable urbanism perspective and assess how realistic these recommendations are, and what the environmental consequences of the greenbelt development approach are likely to be.

First of all, some details on the Centre for Cities methodology. Their Usable Land definition is a 2km crow-flies buffer of rail and underground stations, excluding several environmental protection area types (SSSIs, AONB, SAC, SPA, Ancient Woodlands). The report does not argue that all this land should be developed, rather that it could be considered for development on a case by case basis. They take a ballpark figure that, given infrastructure, services and removing highly amenable land, 60% of the remaining land could be developed for housing at an overall average of 40 dwellings per hectare (thus each hectare of usable land effectively translates to 24 homes). I have repeated this method below and I get a very similar result of 120,000 hectares / 2.87 million homes on London greenbelt land beyond the GLA boundary. I get a lower (but still substantial) figure of 12,700 hectares / 306,000 homes on greenbelt land within the GLA.

SouthEast_GreenbeltDev_Map1b

There are two main spatial analysis issues with the Centre for Cities method of identifying usable land- firstly there are significant development restrictions missing, and secondly there are problems with using rail station buffers as a proxy for sustainable travel. Regarding the first problem, the most significant restrictions that should be included are flood risk areas, and additional environmental land and habitats (principally Priority Habitat Areas). The impact of these additional restrictions is shown in the map below. Surface water and flooding risk in particular covers large areas of land in the Thames Valley west of the GLA, and north in the Lee Valley, reflecting the role of the greenbelt in flood management. Assuming these areas would not be developed, this removes nearly 40% of the usable land from the analysis, leaving 75,000 hectares. With more data and time, further restrictions could be considered, for example local site access, road congestion, airport flight paths, heritage restrictions etc.

SouthEast_GreenbeltDev_Map2c

The second problem is how to consider public transport accessibility and sustainable travel. The basic principal used by Centre for Cities is sound- directing development to areas of public transport access. But locations within 2km of rail stations in the South East are often very small towns and villages, lacking local retail and services opportunities. Not surprisingly these small towns are generally highly car dependent, with around 80% of commuters driving to work, and similar patterns for other trip purposes. Building further low density housing in these locations would likely reproduce this pattern of car dependence.

Ideally the appropriate method here would be to do some accessibility modelling and network analysis (comparable to the PTAL approach used in the London Plan) to identify locations with access to local services and a range of public transport options. Unfortunately performing accessibility modelling for the whole of the South East is not trivial. The maps below shows a simpler alternative, identifying locations within an estimated local walk/bus trip of a retail and service centre (3km of a large centre, 2km of a medium centre or 1km of a small centre) based on 2010 Valuation Office data, in addition to the 2km buffer of rail stations. It is clear that a stricter definition of accessible locations greatly reduces the resulting volume of usable land, directing potential development to larger settlements with more facilities (and public transport services) like Southend, Maidstone and Hemel Hempstead. In this case it leaves 27,500 hectares of greenbelt land beyond the GLA, or 23% of the original figure. Note we also haven’t considered public transport capacity, which is a critical issue for commuters into London as many services are overcrowded.

This analysis points to the Centre for Cities figure of 3 million potential homes in the greenbelt being a big overestimate if sustainable planning guidance is going to be followed. Yet even with this stricter approach I still get a large figure of 27,500 hectares of potential development land in the greenbelt beyond the GLA, which would be about 650,000 homes at suburban densities or more at higher densities. This could go a long way to alleviating the housing crisis in the South East. The Centre for Cities report is convincing in its wider policy argument that land should be ‘evaluated on its merits’ rather than being fixed by blanket restrictions. Greenbelt development could play an important and perhaps even relatively sustainable role in addressing the housing crisis.

The question then is how any release of greenbelt land can be managed to prevent sprawl and retain the many environmental roles that the greenbelt embodies. There is also the problem of making the case to the public when the greenbelt has traditionally been a popular policy. And so we come back to the issue of local authorities cooperating to tackle regional challenges. A million commuters cross the GLA boundary every weekday, yet regional planning is almost non-existent. Any release of greenbelt land needs to be considered in its regional context and balanced against brownfield opportunities. The biggest housing opportunities are linked to new infrastructure (e.g. Crossrail both West and East of the GLA; the Varsity Line for Oxford-Milton Keynes-Cambridge), again at the regional scale. Its hard to see how the housing crisis can be tackled without much greater regional cooperation and some form of regional planning for the South East.

Overheating London and the Evolving North: Visualising Urban Growth with LuminoCity3D.org

Urban policy is currently riding high on the UK political agenda. A combination of the desire to rebalance the UK economy away from financial services; debates over massive high-speed rail investment; the worsening housing crisis in the South-East; and city devolution demands following the Scottish referendum, all point to major reform. As we move towards the 2015 general election, addressing city concerns is going to be a key, perhaps even decisive, election debate.

It is therefore a good time to take stock of recent urban growth and change in Great Britain, assess policy successes and failures, and consider how better outcomes might be achieved in the coming decades. This post draws on map visualisations from the LuminoCity3D.org website.

London and the South-East: Global Boom Region to Elite Island?
London’s recent growth has been phenomenal, gaining over a million residents (+13%) between 2001 and 2011. As we can see in the figure below, population growth has occurred across all of Greater London (except Kensington & Chelsea), with the strongest concentrations in Inner London and East London, reflecting the priorities of successive London Plans. This spectacular growth has not been confined to Greater London either, but is found across the South East region. The fastest growing UK towns and cities are nearly all in London’s orbit, including Milton Keynes with 20% growth, Ipswich with 15% growth, Cambridge with 16% growth and Ashford with 21% growth. This shared growth clearly illustrates that the South East is a closely integrated region, as further demonstrated by extensive commuting flows.

LondonSE_PopChange
Population Change 2001-2011 in the South East region.

Inevitably it is strong economic growth that underpins this rise in population. London gained 650,000 jobs (+15%) between 2001-2011, strongly focussed in Inner London and Canary Wharf. Employment growth is much more unevenly spread across the South East, and arguably booming Inner London is taking jobs away from other centres, or pressuring some into becoming dormitory suburbs through soaring demand for housing. This is most clearly seen in Outer London in centres such as Croydon and Bromley where employment has fallen, while resident population has risen.

LondonSE_EmployChange
Employment density change 2001-2011 in the South East region.

Inner London is dominant for many employment sectors, not just financial and business services, but also creative industries, research, tourism, and increasingly for information technology, helping London to bounce back successfully from the great recession. The IT industry is an important growth sector, and has traditionally been concentrated in Reading, Bracknell and surrounding towns, an area dubbed the Western Sector by Sir Peter Hall in the 1980s. The Western Sector still retains the highest percentage of IT jobs in GB, but recent growth here has been sluggish. The current stars of the IT industry are now online and social media businesses, and these are attracted to the creative pull of Inner London. Meanwhile the most significant South East growth story outside the M25 has switched north, with Oxford (12% jobs growth), Milton Keynes (14% jobs growth) and Cambridge (22% jobs growth) forming a new northern arc of science and engineering based growth.

So with so many success stories, you be forgiven for thinking everything looking rosy for London and the South East. Unfortunately this is not the case. Soaring population growth has in no way been matched by new housing construction. What was previously a housing affordability problem in the South East is now an outright crisis that threatens to put the brakes on the entire region. Mean house prices just passed the incredible figure of £500,000 in July of this year, and a recent survey placed London as the most expensive city in the world to live and work. This is a looming disaster for future growth prospects. The crisis is not limited to London either, as shown below, with median prices above £300k for much of the South East, and the most popular cities experiencing similar extremes to London.

LondonSE_HousePrices copy
House prices 2013 in the South East region.

Soaring prices may seem like great news for property owners, but ultimately cities rely on their ability to attract talent and new businesses. And as London’s competitiveness falls, growth will go elsewhere. What has traditionally been a region of opportunity risks becoming a closed-shop for the wealthy.

And the situation is in danger of getting worse before it gets better. The current UK government did not create the housing shortage, but have overseen a period of historically low house building, with 2014 rumoured to hit rock-bottom. Mapping new-built housing sales leaves a sea of white, largely because there have been so few new houses constructed to sell. The recession presented an ideal opportunity for investing in housing and addressing unemployment, but this opportunity was missed. Trumpeted planning reforms have achieved very little, while right-to-buy policies have simply further increased prices.

Solving the housing crisis requires reform on a number of fronts. More power for local authorities to borrow money and make compulsory land purchases would certainly help. Linked to this is a desperate need for property tax reform to encourage housing to be used efficiently. Currently a £300k house pays the same council tax as a £10 million house, while empty housing is not discouraged, leaving many houses in Inner London as empty or underused investment vehicles. Similar arguments are made in favour of a land value tax to encourage land to be used efficiently and stop land banking.

Perhaps the most controversial issue is whether the green-belt can be retained in its current form. Calls from the eminent Richard Rogers that all new development can still be on brownfield frankly look out of touch with the reality in the South East. The debate really needs to switch towards how a controlled release of green belt land can be managed to avoid car-based sprawl and develop sustainable urban areas. Mapping rail infrastructure and urban density in the South East as shown below indicates that there are many potential locations with rail stations and room for growth. This approach would only however create more commuter towns, and ultimately there needs to be stronger planning for the entire South East region, likely with big urban extensions for successful cities such as Milton Keynes, Cambridge and Brighton. It is interesting that recent entries for the Wolfson prize were focussed on this approach.

LondonSE_greenbelt
Rail infrastructure, the green belt and urban density in the South East region

 

Northern Evolution: an Emerging Hierarchy of Urban Centres?
While the South East is in danger of overheating, the majority of the UK’s city-regions have been focussed on post-industrial regeneration and stimulating growth. And in the last decade there has been significant change for many northern cities. Starting in the North West and Yorkshire we can see rising populations in all the major city centres. Greater Manchester in particular has experienced high levels of growth, gaining 200,000 residents (+8%) and 100,000 jobs (+10%) between 2001 and 2011. By the regional definitions used in LuminoCity3D.org, Greater Manchester has overtaken the West Midlands to become the second largest city-region in the country with 2.6 million residents. Manchester city centre has also experienced high rates of employment growth and is the primary centre in the North West, with positive signs in the business services and science & engineering sectors.

The Leeds and West Yorkshire region is also growing quickly, gaining 120,000 residents (+8%) and 50,000 jobs (+6.6%). Population growth is greatest in Leeds city centre, but is evident across the region, particularly in Bradford and Huddersfield. Similar to Manchester, employment growth is focussed strongly on the largest centre, Leeds, with a concentration in financial and business services. Despite West Yorkshire and Greater Manchester being two of the most dynamic northern regions, there is very little travel interactions between them due to poor transport links, and this surely needs to be a policy priority.

Sheffield also displays significant city centre led growth, gaining 45,000 (+6.3%) residents and 21,000 jobs (+6.7%), as does Liverpool although there has been some population decline in the suburbs. Liverpool’s figures are a gain of 21,000 residents (1.8%) and a more impressive 44,000 jobs (10%).

NorthWest_PopChange
Population change 2001-2011 in the North West and West Yorkshire regions.

LuminoCity3D_EmpDenChangeNorth
Employment density change 2001-2011 in the North West and West Yorkshire regions.

The house prices map for the north-west and Yorkshire makes a very interesting comparison to London. The dramatic gentrification that has transformed Inner London towards increasing affluence and polarisation has not (yet?) occurred. The wealthy areas are mainly suburban in the north-west, often where large cities merge with national parks such as the Peak District and the Yorkshire Dales. There are some signs that wealthier South Manchester is beginning to move towards the city-centre, but this is still in earlier stages of city-centre transformation.

NorthWest_HousePrices
House prices 2013 in the North West and Yorkshire regions.

Moving on to the Midlands, again we can see population growth across all major city centres. Birmingham and the West Midlands gained 162,000 residents (7.3%) and 47,000 jobs (+4.8%) between 2001 and 2011, with similar city centre employment density levels to Manchester. The most dynamic cities in the Midlands seem to be medium sized cites, with Leicester growing 12.8%, Nottingham by 8.1% and Derby by 11.8%, although jobs growth is more mixed. There is a significant concentration of business service jobs in Birmingham city centre, but by far the most distinctive sector in the Midlands economy is hi-tech manufacturing and R&D jobs linked to the automotive industry. Clusters around major factories can be seen in Solihull Birmingham, Coventry, Derby, Telford, Warwick and Crewe, with manufactures including Jaguar Land Rover and Toyota. The distributed nature of employment contributes to considerable travel flows between neighbouring cities.

Midlands_PopChange
Population change 2001-2011 in the Midlands region

Midlands_JobsChange
Employment density change 2001-2011 in the Midlands region.

Similar to the North West and Yorkshire, city centre housing markets are relatively inexpensive in the Midlands, with wealthier areas in the suburbs, particularly between Birmingham, Coventry and Warwick/Leamington Spa. There are signs that wealthier groups to the south of Birmingham are moving further into the city centre.

Midlands_HousePrices
House prices 2013 in the Midlands region.

Will Growth Transfer from the South East to the North?
With the South East struggling to accommodate growth and northern regions trying to attract more growth, the answer seems obvious- transfer growth to the north. Unfortunately urban economics is seldom that straightforward. London is a global leader in a range of service sectors, and it does not automatically follow that existing firms and new firms would choose northern cities over the South East. There are however many encouraging signs in cities such as Manchester, Leeds and Birmingham with growth in a range of knowledge-economy sectors. The gap with the South East still remains extensive, and this essentially is the crux of the debates about city devolution and infrastructure investment: whether or not these policies can enable northern cities to bridge this gap. London currently has great advantages in terms of public money invested in infrastructure like public transport, and also in terms of political power to plan and manage growth through the Mayor and Greater London Authority. The argument in favour of empowering northern cities looks increasingly convincing, and we shall see in the coming months whether politicians are brave enough to instigate this process.

 

 

Explore the performance and dynamics of GB cities at LuminoCity3D.org

Recent urban growth in the UK has further emphasised the role of cities in influencing economic prosperity, quality of life and sustainability. If we are to meet 21st century social and economic challenges then we need to plan and run our cities better. Data analysis can play a useful role in this task by helping understand current patterns and trends, and identifying successful cities for sharing best practice.

LuminoCity3D.org is a mapping platform designed to explore the performance and dynamics of cities in Great Britain. The site brings together a wide range of key city indicators, including population, growth, housing, travel behaviour, employment, business location and energy use. These indicators are mapped using a new 3D grid-based approach that allows consistent comparisons between urban areas to be made, and relationships between urban form and city performance to be identified (technical details are provided here). Press coverage of LuminoCity3D has included Londonist, Wired.co.uk, Independent Online and Guardian Cities.

Taking for example employment density change in northern English cities as shown below. Current growth is mainly in ‘knowledge-economy’ services that generally favour being clustered together in city centres, generally reinforcing a select few larger centres rather than many smaller centres. There is clear growth in Manchester, Leeds and Liverpool city centres, particularly Manchester which displays the biggest increase in employment density of any location in GB. But around these success stories there is a much more mixed picture of growth and decline for many other centres that are finding it more difficult to compete for firms and jobs.

Employment density change in the north of England (blue is an increase and orange decline). Manchester and Leeds city centres have established themselves as the largest centres, with the biggest increase in Manchester.

Interactive City Statistics

City statistics are available to make more precise comparisons between urban areas. Statistics can be viewed on LuminoCity3D.org by moving your mouse pointer over a city of interest, or by hovering/clicking on the GB Overview Chart at the bottom left of the screen. The graphs and statistics change depending on the map indicator selected, so that the LuminoCity maps and statistics are interactively integrated.

The example below shows public transport travel, a key sustainability indicator that also has important economic and equity implications. Greater London is by far the public transport centre of the UK with nearly 50% of commuting by public transport. Without the investment and historic advantages of London, city-regions like Manchester and Birmingham do not even manage 20% PT commuting. But we can see that it is not essential to be as gigantic as London to achieve more sustainable travel. Edinburgh, with a compact form and extensive publicly owned bus network, achieves 36% PT commuting.

Public transport commuting in central Scotland. Hovering over urban areas highlights indicator statistics and highlights the city’s position on the GB Chart.

Indicator Themes

The map indicators on LuminoCity3D.org are split into five themes- Population, Transport, Housing, Society and Economy- which are selected from the Indicators Selection box to the top right. Population covers resident and employment density; Transport looks at journey-to-work, accessibility and air-pollution; Housing covers house prices, types, tenure and household size; Society looks at various inequality measures; and finally Economy covers the distribution of growth industries such as ICT, creative industries and hi-tech manufacturing.

LuminoCity3D_HousePPSE
House prices 2013 in the South East of England.

Comments and feedback on the site are very welcome. Have a look at the Comments & FAQ page, tweet @citygeographics, or email duncan2001@gmail.com.

LuminoCity3D Credits

Site design and cartography © Duncan A. Smith 2014.

Duncan is a researcher at the Bartlett Centre for Advanced Spatial Analysis, University College London. Data hosted at CASA with generous help from Steven Gray.

Maps created using TileMill opensource software by Mapbox. Website design uses the following javascript libraries- leaflet.js, mapbox.js and dimple.js (based on d3.js).

Source data Crown © Office for National Statistics, National Records of Scotland, DEFRA, Land Registry, DfT and Ordnance Survey 2014.

All the datasets used are government open data. Websites such as LuminoCity would not be possible without recent open data initiatives and the release of considerable government data into the public domain. Links to the specific datasets used in each map are provided to the bottom right of the page under “Source Data”.

 

 

Mapping the Densification of Cities in England & Wales using the 2011 Census

UK cities have been undergoing significant change over the last decade, and the 2011 census data provides a great basis for tracking current urban structure. I’ve mapped population and employment density for all of England and Wales in 2011, using a 1km2 grid scale approach-

Design01_ResidentialEmploymentDensity_EngWales_lowres

The main themes that emerge are the dramatic intensification of London, high densities in some medium sized cities such as Leicester and Brighton, and the regeneration of the major northern conurbations, with Manchester and Birmingham as the largest employment hubs outside of London.

Mapping all of England and Wales together is a useful basis for considering city-regions and their connections (note Scotland has not yet published census 2011 employment data and is not mapped). Certainly this is a major theme in current policy debates grappling with the north-south divide and proposed high-speed rail links. I’ll be looking at densities in relation to network connections in future posts as this topic is part of ongoing research at CASA as part of the MECHANICITY project.

It is also possible to directly map changes in density between using the same visualisation approach (note the grid height describes density in 2011, while colour describes change in density between 2001-2011)-

Population Density Change 2001-2011

The change map really highlights the pattern of city centre intensification combined with static or marginally declining suburbs in England and Wales. This trend was discussed in a previous post. The two statistics of peak and average densities reinforce the city centre versus suburbs divide, with peak density measurements growing much more than average densities. But the peak density statistic is somewhat unreliable (such as in the case of Birmingham/West Midlands) and we will be doing further work at CASA to define inner cities and produce more robust statistics of these trends.

 

Notes on the Analysis Method-

The density values were calculated from the smallest available units- Output Area population and Workplace Zone employment data from the 2011 census. This data was transformed to a 1km2 grid geography using a proportional spatial join approach, with the intention of standardising zone size to aid comparability of density measurements between cities. The transformation inevitably results in some MAUP errors. These are however minimised by the very fine scale resolution of the original data, which is much smaller than the grid geography in urban areas.

The workplace zone data is a very positive new addition by the Office for National Statistics for the 2011 census. There is a lot of new interesting information on workplace geography- have a look at my colleague Robin Edward’s blog, where he has been mapping this new data.

Defining city regions is another boundary issue for these statistics. I’ve used a simple approach of amalgamating local authorities, as shown below-

CityRegionBoundaries

 

 

London’s High Rise Debate

Last week New London Architecture, centre for built-environment debate and communication, launched a new exhibition on London high rises and high buildings policy. As well as including many spectacular models of present and future buildings, the exhibition presents results from NLA research into London’s current generation of high building proposals.  The most eye-catching finding is that there are over 230 towers of 20 storeys or more proposed or under construction in London, potentially resulting in a dramatic change in London’s urban environment. A high profile campaign has been launched by the Guardian and Architects’ Journal calling for for more discussion and a ‘Skyline Commission’ to assess the impacts of these many developments. The NLA exhibition itself takes a more neutral tone in the debate, and highlights are summarised below.

NLA_Exhibition_Leadenhall
NLA “London’s Growing Up” Exhibition, with Leadenhall Building Model

It’s clear from the NLA map below that the majority of proposals are strongly clustered spatially, with many adjacent to existing high rise districts of Canary Wharf and in the City around Bishopsgate and Liverpool Street. There are however many new clusters set to be created, principally Vauxhall-Nine Elms; Waterloo; Blackfriars Bridge; City Road (Islington); Aldgate; Stratford and North Greenwich. Demand for high rises is a result of acute pressures for more housing, and the prioritising of development at public transport nodes, such as Canary Wharf, Vauxhall and Blackfriars. In heritage terms a number of these clusters are controversial, particularly those along the South Bank that affect London’s river views, and those proposals in the vicinity of the world heritage sites of Westminster and the Tower of London.

SkyscraperLocationMap
NLA Insight Study map of current high building proposals

The main critique from campaigners is that there is a lack of vision from planners regarding high buildings policy, and that current developments are being driven by schemes for luxury residential flats along the river that maximise developer profits. The map above lends support to this view, particularly along the South Bank and at Vauxhall. There are already many medium rise luxury flat developments along the Thames of often limited design quality, and its debatable whether the current batch of taller developments will be any better. Policy restrictions in London are strongly geared towards protecting views of St Pauls Cathedral, effectively preventing new schemes in West Central London. Protection elsewhere is more limited and dependent on borough level interpretations of policy. Westminster has prioritised conservation and prevented new high rises (except at the Paddington Station development) while neighbouring boroughs of Lambeth and Southwark are more inclined to accept proposals, and use the much needed revenue for further housing development.

As well as covering the current planning debate, the exhibition includes many beautiful architectural models of existing and future high building proposals. There are some really unique designs, such as the fountain pen-shaped ‘Pinnacle’ that is back under development in the main City of London cluster.

Overall the exhibition is well worth a visit, and whether you are a fan or a critic of high buildings in London, there is clearly a need for greater awareness and discussion of current changes and what they will mean for the urban environment. There is also a need for more public access to open models and visualisations of how new buildings will appear and change London’s physical structure. Andy Hudson-Smith (@digitalurban) argued for this a few years back in CASA’s Virtual London project, and it appears that trends are currently moving in this direction.

SkyscraperMinatures

LargeModel_CityCentre

 

 

 

An Urban Renaissance Achieved? Mapping a Decade of Densification in UK Cities

It’s been 14 years since the landmark Urban Task Force report, which set the agenda for inner-city densification and brownfield regeneration in the UK. Furthermore we’ve seen significant economic and demographic change in the last decade that’s greatly impacted urban areas. We can now use the 2011 census data, mapped here on the LuminoCity GB site, to investigate how these policies and socio-economic trends have transformed British cities in terms of population density change.

The stand-out result is that there’s a striking similarity across a wide range of cities, with overall growth achieved through high levels of inner-city densification (shown in lighter blue to cyan colours) in combination with a mix of slowly growing and moderately declining suburbs (dark purple to magenta colours).

ChangeLegend

 

 

ManchesterPopDenChan01
BirminghamPopDenChan01
LeedsPopDenChan01
SheffieldPopDenChan01

We can see this pattern in the growing urban regions of Manchester, Birmingham, Leeds and Sheffield above. Manchester has the fastest population growth after London, with 8.1% growth in the city-region, and a massive 28% growth in the core local authority. Average densities in Manchester have gone up by 28% (+35 residents per hectare), but it’s not a uniform growth. There are new development sites at a very high 300 or 400 residents per hectare, contrasting with low density surrounds and the extensive remaining brownfield sites. There is a patchy nature to the current urban fabric of Manchester, indicating that much further development could still take place.

The West Midlands Conurbation is the third fastest growing city-region at 7.3%, with a higher 10% growth in the core city authority Birmingham. Density increases are more modest here (+13 residents per hectare) but the same general pattern remains. Similar patterns of high density inner-city growth are also clear in Leeds (5% growth) and Sheffield (8% growth).

The trend applies to medium size cities also. Those cities with the highest growth rates like Leicester (+18%), Nottingham (+14%), Cardiff (+13%) and Bristol (+12.5%) show fewer signs of suburban depopulation-

Nottingham Leicester
Cardiff Bristol

Scottish cities have a stronger tradition of high density inner-city living. With compact cores already in place, Edinburgh (+6.5%) and Aberdeen (+5%) have been expanding the inner city into Leith and Old Aberdeen-

Edinburgh Aberdeen

Meanwhile the UK’s former industrial powerhouses of Glasgow, Liverpool and Newcastle display a more problematic variation on this pattern. City centre intensification is still much in evidence, with core city authority populations growing at 8% in Newcastle, 6% in Liverpool and 4% in Glasgow. But this growth is in combination with outright decline in some surrounding towns and suburban areas, particularly around Glasgow. These patterns are linked to major programmes to overhaul poor inner-city housing stock, but are also inevitably linked to weaker economic growth in Glasgow and Liverpool. The picture is better in Tyne & Wear, where there are more positive employment signs (8% growth in workforce jobs 2001-2011).

Newcastle
LiverpoolGlasgow

What is driving this urban dynamic?

In addition to planning policy shifts, a series of economic and demographic changes are contributing to the pattern of central growth and struggling suburbs, as commentators have variously been observing in the UK and US (e.g. gentrification researchers, Erenhalt, Kochan). Demographic aspects include more students, immigrants, singles and childless couples. Economic aspects include city-centre friendly service and knowledge economy jobs, as well as increased costs of petrol. For these trends to occur over a wide range of demographically and economically diverse cities in the UK and beyond, clearly there are multiple factors pulling urban populations and growth in similar directions.

London Extremes

 


We’ve avoided the gigantic outlier of London so far. It’s a city apart in many ways- much larger (8.1 million in the GLA area) and faster growing (+14% 2001-2011). It’s also massively higher density, with average residents per hectare 50% higher (nearly 200 residents per hectare) than the next most dense city-region in GB. The biggest changes have been in Inner East London. Tower Hamlets (where Canary Wharf has boomed) is 1st on every indicator- highest population change (+28.8%), highest employment change (+50%!!), highest population density (324 residents / hectare). The pressures for growth in London are so high that there is little surburban decline in population terms (although employment has been declining significantly in Outer London).

London1

Yet the high rate of densification in London has come nowhere near meeting housing demand. London is the midst of a massive housing shortage and crisis, with some of the world’s highest property prices. The debate is currently raging about what needs to be done to accelerate construction, with advocates of transforming more land to community ownership (e.g. Planners Network UK), relaxing planning regulations such as the green belt (e.g. LSE SERC), and implementing an array of measures simultaneously (e.g. Shelter Report). We can see London’s challenges in the maps, such as the failure thus far of the flagship housing expansion programme, the Thames Gateway, to deliver. Some high profile development sites like Stratford and Kings Cross have only recently opened for residents and so do not show in the 2011 data.

London2
The Thames Gateway- aside from Woolwich, little housing has been delivered.

Another more surprising result is the fall in the population of Inner West London, particularly Kensington and Chelsea. While this finding does need some context- K&C is still the forth most densely populated local authority in the country- it’s still an amazing trend given the extreme population pressures in London. It is in line with arguments that the most expensive properties in London have become investments for international capital rather than homes for living. Such trends push prices up, cut supply and bring questionable benefits to the city. Addressing this issue would require tax changes, and macro economic factors like the value of the pound and yields on alternative investments are also clearly influential.

London3
Inner London- expansion in the East and decline in Kensington & Chelsea

Summary- an Ongoing Renaissance and Suburban Challenges

Well to state the obvious GB cities are, with only a few exceptions, growing significantly. That’s not to be sniffed at given the history of widespread urban decline throughout the second half of the 20th century. And secondly the pattern of growth in density terms is clear- densifying inner cities, and fairly static or declining suburbs. The scale of London and the severe housing crisis has it’s own unique dynamics, while Glasgow and Liverpool are still dealing with significant population loss in many areas of the city region. But on the whole, the pattern is surprisingly consistent across cities in Great Britain.

Clearly this review prompts a series of further questions analysing the economic, demographic, gentrification, deprivation and property market processes inherent in this urban change, and what future city centres and suburbs will be like. Hopefully this mapping exercise should is a useful context for the ongoing research.

Copenhagen and Hong Kong: Mapping Global Leaders in Green Transport

Cities that achieve social and economic success without high car use generally have three things in common: high densities, good urban design, and successful planning frameworks that integrate land-use with public transport, walking and cycling networks. I’ve been working on an LSE Cities project that investigated two leading global cities in green transport- Copenhagen and Hong Kong- to better understand how their leading positions were reached. You can read the final Going Green report here.

The project required visualising the level of integration between public transport and urban density in these cities. We developed a technique where the rail network is shown as a transect through a 3D population density surface. This shows how the density of jobs and residents in these cities is clustered around major public transport nodes.

CopenhagenMap_small

Copenhagen has a classic radial pattern, based on the famous ‘Finger Plan‘ developed over 60 years ago, where linear urban features are separated by thin green wedges. This is quite distinct to the UK greenbelt approach. Current expansion is focussed to the south of the city centre along the Orestad corridor served by the more recently developed metro links. This area sites the airport and transport links to Sweden, continuing the cross-border integration between Copenhagen and Malmö.

Hong Kong makes a very interesting comparison. It is on average 8 times(!) higher density than Copenhagen, and peak densities are around four times higher at nearly 150,000 jobs & residents per square kilometre. This is due firstly to the natural boundaries and country park designations that prevent suburban development, and secondly to the unique ‘Rail plus Property’ planning model run by the government and MTR, where extremely high development densities are pursued at rail station sites, and land value gains captured to fund public transport. The result is a polycentric pattern of jagged nodal development.

HongKongMap_small

Another way to consider this relationship is to measure typical distances to rail & metro stations for these cities. As can be seen below, Copenhagen and Hong Kong compare favourably to other leading global cities like London and New York.

It would be interesting to pursue this analysis further for London. You can see that London scores relatively lower for the population within 500 metres of stations. Intensification policies at public transport nodes are a recent policy change for London. Accessibility figures are likely to change over time with several major intensification projects under way at rail stations in Inner London.

(Above figure based on metropolitan regions. Defined as Outer Met Area for London and 100 km by 100 km square centred on Manhattan for NYC).

Automobile 2.0: Electrification, Sharing and Self-Drive

Autonomous car concept by Mike and Maaike.

 

Despite the litany of sins levelled at the automobile- it’s woeful energy efficiency, harmful pollution, congestion, road casualties, damage to public space, contribution to obesity- we are still wedded to the car. In the UK the car accounts for over three quarters of trip miles. The flexibility, security and door-to-door convenience of automobile travel remains a winning combination, particularly when we spent most of the 20th century developing car-based cities with limited alternatives.

Current planning practice restricts car travel to improve sustainability and urban quality of life. Short of an outright ban however, the car is here to stay in some form or other.

For the automobile to be in any way sustainable we need to radically challenge current systems of car design, driving and ownership to effectively create a new mode of transport. This post considers whether such a revolution is possible in light of exciting recent innovations.

Electrification
We now for the first time have competitive alternatives to the internal combustion engine car on the market with electric and hybrid models from the world’s biggest manufacturers. These technologies dramatically reduce or remove tail-pipe emissions. Surely then the eco-car has now arrived and city transport has been saved?

Nissan Leaf plugport

 

Well… as electric cars (and vans/taxis/buses) become more widespread urban air quality should improve dramatically, as should vehicle mileages. But as we generate the majority of electricity using fossil fuels (and will continue to do so for the next 20 years+), CO2 emissions from electric cars remain significant.

Furthermore several other car design issues are not solved by electrification, such as energy used in manufacture, road congestion, safety and damage to public space. There’s a danger that electric cars become merely a green-wash cover for business as usual, rather than as a step towards bigger change.

Sharing
Most cars are driven for a relatively short period each day, and are parked the rest of the time occupying land (around 10% in cities). On-street parking eats up large amounts of valuable public space from pedestrians, public transport and cyclists. It’s a wasteful situation, both for the efficiency of cities and for the environment due to the vast amounts of materials and energy used to manufacture our largely idle cars.

One increasingly popular solution in cities is car-sharing, with the largest company Zipcar now up to 700,000 members. Car-sharing is a convenient and affordable option for many city residents who want regular car access without the hassles of ownership. The popularity of smartphones provides an easy way to manage car-share booking. Comparable sharing trends are also evident for ride-sharing and for urban cycling.

Is sharing the answer then to the sustainable city travel? It’s definitely an important trend. Sharing allows a much better pricing model for driving, paying by the mile and charging more at peak times, thus encouraging more efficient behaviour.

Car-sharing coverage is limited however to denser urban areas, and it is not yet clear to what extent car-sharing can significantly reduce the total number of vehicles and car parking space in cities.

Self-Drive
The last trend is at a much earlier stage than electrification and car-sharing, yet it could have the most far-reaching consequences. Sat-nav and parking-assist technologies were early steps towards greater automation in cars. Now Google as well as several manufactures have working prototypes of autonomous or self-driving vehicles.

Amazing yes, but what’s the point? In its current form, the application of this technology is not immediately clear, beyond providing a luxury car gizmo that lets you read the paper while your car drives you to work. But future developments will likely involve cars built around self-drive from the ground-up.

Potentially you could have a city taxi fleet of fully autonomous electric cars, requested by smartphone, operating 24 hours a day, moving to areas of high demand, charging batteries when not in use. Whilst bad news for taxi-drivers, such a system could be highly efficient and provide a quick and flexible complement to mass transit networks.

A related concept has already been developed in a rail-pod form operating at Heathrow airport. Dubbed Personal Rapid Transit, it is intended to combine the advantages of both private and public transport. Obviously the challenges of converting such a system to operate autonomously in the ‘wild’ of the urban environment are many, yet are increasingly being tackled.

If such a system could safely and legally operate, the implications would be massive. Imagine freight and courier services operating automatically at night to minimise disruption; your car picking up your shopping on its own, or taking a nap and waking up at your destination.

Reality Check
It’s easy to get carried away with the wonders of new technology. Transport challenges require political and economic solutions as much as technological brilliance. Indeed relying on car manufacturers alone to green transport is as unlikely as “Beyond Petroleum” BP and Shell delivering the renewable energy revolution. Yet there is some incredible innovation currently emerging, and the next couple of decades are certain to be very interesting times for urban transport.

 

BBC London Calling Season

 

To mark the Olympic year a series of programs on London is being broadcast by the BBC, exploring the dynamic and diverse nature of the capital and its historic roots. There have already been some great documentaries on, with interesting use of maps, archive materials and personal testimonies charting the changing city and built-environment.

Last night saw the start of The Secret History of Our Streets, telling London’s history in microcosm by picking one street to follow in each episode through good times and bad. The first episode told the rather tragic tale of Deptford High Street, which moved from a relatively thriving working class centre in the early 20th century to one of London’s poorest areas in the present.

A shop trader John Price (below) who has lived in Deptford all his life engagingly recounts the close community life of his youth with his extended family all living on the same street. This is brought to an end with the drawn out demolition of the Victorian terraced housing to be replaced by modern estates. The existing community is separated as families move out to suburban new towns.

Modernist planning is unashamedly painted as the bad guy in this narrative. “Tell ’em the truth, tell ’em how they fucked everything up” mutters a passerby in one scene. The father of British Planning, Patrick Abercrombie, appears as a monocled toff in the archive footage, as he expresses his disgust at London’s old housing. This critical view of planning intervention is clearly simplistic, as there were of course very severe housing problems in London.

Yet the filmmakers back up their perspective by uncovering the council’s environmental health archives, showing that John Price’s street was healthy and in a decent state of repair- not the slum that it was labelled. To add salt to this wound, such traditional housing is now in great demand in Deptford and Greenwich, with terraces on nearby streets selling for well over half a million pounds, in stark contrast to the drab and inflexible modernist housing that replaced it and cannot be gentrified. The forthcoming episodes in this series will likely tell more rosy tales of changing London, but Deptford’s history was hard hitting stuff and very well told.

Continuing on the traditional market theme, the BBC has also been exploring London’s remaining wholesale markets in The London Markets. These have moved out of the city centre for cheaper rents and road transport links, with Billingsgate fish market moving to Docklands and Covent Garden fruit and veg going to Vauxhall. Smithfield meat market is still hanging on near the City, but surely not for long. The arcane night-time world of the butchers appears as a weird anachronism surrounded by late night financiers and clubbers in Farringdon.

Lastly on a lighter note, A Picture of London explored artists interpretations of the city across time. As well as picture postcard views from Canaletto and Monet, some of London’s most dramatic moments are depicted such as the burning of the Houses of Parliament by Turner. My personal favourite however was this gem from the archives of a witty and prescient silent movie from the 1920’s of a time traveller guessing what London might be like in the future. Perhaps the oldest urban sci-fi film? Take a look:

Mapping Intra-metropolitan Journey-to-work Sustainability


As cities expand with multiple centres spread over massive regional hinterlands, the need to better understand the geographical variation across and within cities has become more pressing. This need applies strongly to issues of travel sustainability, where urban centres differ greatly in the accessibility they facilitate for private, public and active transport.

Spatial indicators are a useful tool to summarise complicated intrametropolitan patterns, as illustrated in my new working paper mapping CO2 emissions from journey-to-work travel across the London Region. The results of this indicator show a massive range of travel emissions by workplace of up to 300%, with particular problems for airports and the specialised employment region of the Western Sector, as can be seen in the map above.

This paper was co-authored with Joan Serras at CASA, who helped with the development of the road and public transport network analysis to model realistic routing behaviour from origin and destination flows from the 2001 census. One interesting aspect to this was the inclusion of GPS data to model average road speeds in London as illustrated below:

Full paper abstract:

“This paper develops a methodology for estimating network distances and CO2 emissions for UK census ward-level journey-to-work interactions. Improvements are made on existing empirical measures by providing comprehensive intra-metropolitan analysis; increasing network routing accuracy with UK public transport timetable and GPS-based average road speed data; allowing multimodal travel; and developing metrics suitable for travel sustainability analysis. The output unit of CO2 emissions has been selected to enable the integration of mode-choice and travel distance data, and to aid compatibility with integrated assessment applications. 

The methodology is applied to the case study of the London Region for the year 2001. A very high degree of intra-metropolitan variation is identified in the results. Employment sub-centres diverge in their per-capita CO2 emissions by up to 300%, with specific problems of carbon intensive commuting to major airports and the specialised employment region of the Western Sector. These findings indicate that subcentre travel variation may be intrinsic to polycentric urban structures. The paper discusses means to improve the methodology, in relation to issues of coefficient disaggregation and modelling more complicated multi-modal trips.”

The Evolving Business Geography of Greater London

I presented at the CASA Seminar Series yesterday on the topic of business centre specialisation in Greater London. The discussion drew on previous research into knowledge economy agglomeration and urban property markets.

The analysis showed how the diversity and restricted growth of West London underpins the current extremely high rents, whilst the greatly densified City of London faces oversupply with lower demand for financial services after the economic crises. The recent revival of centres in the City Fringe is based on creative industries and IT/new media, and it’s hoped similar recipes will work for future business centres at Kings Cross and Stratford.

 

The slides can be viewed here: